213 research outputs found

    3DQ: Compact Quantized Neural Networks for Volumetric Whole Brain Segmentation

    Full text link
    Model architectures have been dramatically increasing in size, improving performance at the cost of resource requirements. In this paper we propose 3DQ, a ternary quantization method, applied for the first time to 3D Fully Convolutional Neural Networks (F-CNNs), enabling 16x model compression while maintaining performance on par with full precision models. We extensively evaluate 3DQ on two datasets for the challenging task of whole brain segmentation. Additionally, we showcase our method's ability to generalize on two common 3D architectures, namely 3D U-Net and V-Net. Outperforming a variety of baselines, the proposed method is capable of compressing large 3D models to a few MBytes, alleviating the storage needs in space critical applications.Comment: Accepted to MICCAI 201

    Automatic Brain Tumor Segmentation using Convolutional Neural Networks with Test-Time Augmentation

    Get PDF
    Automatic brain tumor segmentation plays an important role for diagnosis, surgical planning and treatment assessment of brain tumors. Deep convolutional neural networks (CNNs) have been widely used for this task. Due to the relatively small data set for training, data augmentation at training time has been commonly used for better performance of CNNs. Recent works also demonstrated the usefulness of using augmentation at test time, in addition to training time, for achieving more robust predictions. We investigate how test-time augmentation can improve CNNs' performance for brain tumor segmentation. We used different underpinning network structures and augmented the image by 3D rotation, flipping, scaling and adding random noise at both training and test time. Experiments with BraTS 2018 training and validation set show that test-time augmentation helps to improve the brain tumor segmentation accuracy and obtain uncertainty estimation of the segmentation results.Comment: 12 pages, 3 figures, MICCAI BrainLes 201

    Revisiting Rubik's Cube: Self-supervised Learning with Volume-wise Transformation for 3D Medical Image Segmentation

    Full text link
    Deep learning highly relies on the quantity of annotated data. However, the annotations for 3D volumetric medical data require experienced physicians to spend hours or even days for investigation. Self-supervised learning is a potential solution to get rid of the strong requirement of training data by deeply exploiting raw data information. In this paper, we propose a novel self-supervised learning framework for volumetric medical images. Specifically, we propose a context restoration task, i.e., Rubik's cube++, to pre-train 3D neural networks. Different from the existing context-restoration-based approaches, we adopt a volume-wise transformation for context permutation, which encourages network to better exploit the inherent 3D anatomical information of organs. Compared to the strategy of training from scratch, fine-tuning from the Rubik's cube++ pre-trained weight can achieve better performance in various tasks such as pancreas segmentation and brain tissue segmentation. The experimental results show that our self-supervised learning method can significantly improve the accuracy of 3D deep learning networks on volumetric medical datasets without the use of extra data.Comment: Accepted by MICCAI 202

    Waist Circumference and Mid−Upper Arm Circumference in Evaluation of Obesity in Children Aged Between 6 and 17 Years

    Get PDF
    Objective: The purpose of this study was to determine the cut−off values for waist circumference (WC) and mid−upper arm circumference (MUAC) and to assess their use in screening for obesity in children

    Neural Style Transfer Improves 3D Cardiovascular MR Image Segmentation on Inconsistent Data

    Full text link
    Three-dimensional medical image segmentation is one of the most important problems in medical image analysis and plays a key role in downstream diagnosis and treatment. Recent years, deep neural networks have made groundbreaking success in medical image segmentation problem. However, due to the high variance in instrumental parameters, experimental protocols, and subject appearances, the generalization of deep learning models is often hindered by the inconsistency in medical images generated by different machines and hospitals. In this work, we present StyleSegor, an efficient and easy-to-use strategy to alleviate this inconsistency issue. Specifically, neural style transfer algorithm is applied to unlabeled data in order to minimize the differences in image properties including brightness, contrast, texture, etc. between the labeled and unlabeled data. We also apply probabilistic adjustment on the network output and integrate multiple predictions through ensemble learning. On a publicly available whole heart segmentation benchmarking dataset from MICCAI HVSMR 2016 challenge, we have demonstrated an elevated dice accuracy surpassing current state-of-the-art method and notably, an improvement of the total score by 29.91\%. StyleSegor is thus corroborated to be an accurate tool for 3D whole heart segmentation especially on highly inconsistent data, and is available at https://github.com/horsepurve/StyleSegor.Comment: 22nd International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2019) early accep

    Weakly supervised segmentation from extreme points

    Full text link
    Annotation of medical images has been a major bottleneck for the development of accurate and robust machine learning models. Annotation is costly and time-consuming and typically requires expert knowledge, especially in the medical domain. Here, we propose to use minimal user interaction in the form of extreme point clicks in order to train a segmentation model that can, in turn, be used to speed up the annotation of medical images. We use extreme points in each dimension of a 3D medical image to constrain an initial segmentation based on the random walker algorithm. This segmentation is then used as a weak supervisory signal to train a fully convolutional network that can segment the organ of interest based on the provided user clicks. We show that the network's predictions can be refined through several iterations of training and prediction using the same weakly annotated data. Ultimately, our method has the potential to speed up the generation process of new training datasets for the development of new machine learning and deep learning-based models for, but not exclusively, medical image analysis.Comment: Accepted at the MICCAI Workshop for Large-scale Annotation of Biomedical data and Expert Label Synthesis, Shenzen, China, 201

    RS-Net: Regression-Segmentation 3D CNN for Synthesis of Full Resolution Missing Brain MRI in the Presence of Tumours

    Full text link
    Accurate synthesis of a full 3D MR image containing tumours from available MRI (e.g. to replace an image that is currently unavailable or corrupted) would provide a clinician as well as downstream inference methods with important complementary information for disease analysis. In this paper, we present an end-to-end 3D convolution neural network that takes a set of acquired MR image sequences (e.g. T1, T2, T1ce) as input and concurrently performs (1) regression of the missing full resolution 3D MRI (e.g. FLAIR) and (2) segmentation of the tumour into subtypes (e.g. enhancement, core). The hypothesis is that this would focus the network to perform accurate synthesis in the area of the tumour. Experiments on the BraTS 2015 and 2017 datasets [1] show that: (1) the proposed method gives better performance than state-of-the-art methods in terms of established global evaluation metrics (e.g. PSNR), (2) replacing real MR volumes with the synthesized MRI does not lead to significant degradation in tumour and sub-structure segmentation accuracy. The system further provides uncertainty estimates based on Monte Carlo (MC) dropout [11] for the synthesized volume at each voxel, permitting quantification of the system's confidence in the output at each location.Comment: Accepted at Workshop on Simulation and Synthesis in Medical Imaging - SASHIMI2018 held in conjunction with the 21st International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2018

    Unsustainable harvest of water frogs in southern Turkey for the European market

    Get PDF
    Frogs have been harvested from the wild for the last 40 years in Turkey. We analysed the population dynamics of Anatolian water frogs (Pelophylax spp.) in the Seyhan and Ceyhan Deltas during 2013–2015. We marked a total of 13,811 individuals during 3 years, estimated population sizes, simulated the dynamics of a harvested population over 50 years, and collated frog harvest and export statistics from the region and for Turkey as a whole. Our capture estimates indicated a population reduction of c. 20% per year, and our population modelling showed that, if overharvesting continues at current rates, the harvested populations will decline rapidly. Simulations with a model of harvested population dynamics resulted in a risk of extinction of > 90% within 50 years, with extinction likely in c. 2032. Our interviews with harvesters revealed their economic dependence on the frog harvest. However, our results also showed that reducing harvest rates would not only ensure the viability of these frog populations but would also provide a source of income that is sustainable in the long term. Our study provides insights into the position of Turkey in the ‘extinction domino’ line, in which harvest pressure shifts among countries as frog populations are depleted and harvest bans are effected. We recommend that harvesting of wild frogs should be banned during the mating season, hunting and exporting of frogs < 30 g should be banned, and harvesters should be trained on species knowledge and awareness of regulations
    • …
    corecore